
1

Module 2: Generic Programming and Policy-based Design
For course “Distance Learning C++, Programming Models, Libraries and Parallel Computation”

© Datasim Education BV 2009

Summary
The exercises are grouped into three main categories:

 Basic templates: creating and debugging template code

 Intermediate: using inheritance and composition with templates

 Advanced (Josuttis/Vanderoorde, code JVD); CRTP patterns, traits, policy-based design, generic
patterns

A. Basic Templates
1. (My first Template Class)
Create a template class that model one-dimensional intervals and ranges. The interface is:
template <class Type = double> class Range

{

private:

 Type lo;

 Type hi;

public:

 // Constructors

 Range(); // Default constructor

 Range(const Type& low, const Type& high); // Low and high value

 Range(const Range<Type>& ran2); // Copy constructor

 // Destructor

 virtual ~Range();

 // Modifier functions

 void low(const Type& t1); // Sets low value current range

 void high(const Type& t1); // Sets high value current range

 //Accessing functions

 Type low() const; // Lowest value in range

 Type high() const; // Highest value in the range

 Type spread() const; // High - Low value

 // Boolean functions

 bool left(const Type& value) const; // Is value left of range?

 bool right(const Type& value) const; // Value right of range?

 bool contains(const Type& value) const; // Range contains value?

 // Operator overloading

 Range<Type>& operator = (const Range<Type>& ran2);

};

2

Write the source code for these member functions. Create a test program to check if your code is OK.

In particular, address the following issues:
a) Each member function should be created and tested

b) Test your code with int, double and string. Which ones work and which one does not?
c) The accessing functions low() and high() return copies of the range’s internal state. Modify the

code so that they return const references to the internal state. What are the advantages?
d) Document the requirements that the underlying type T in Range<T> should satisfy so that clients

will know for which specific types this class will function. In other words, what are the constraints on
T?

2. (Composing ranges)
We now wish to create a class called Box<T1, T2> that models a pair of Range<T> instances:

// Box.hpp

//

// A two-dimensional domain consisting of two ranges

// Common functionality; template specialisations may add

// extra member functions.

//

// (C) Datasim Education BV 2009

//

template <typename T1=double, typename T2= double>

 class Box

{ // A box is composed of two ranges

private:

 Range<T1> dir1; // first direction

 Range<T2> dir2; // second direction

public:

 // Constructors

 // Accessing functions

 // Properties

 bool InBox(const T1& first, const T2& second) const;

};

Answer the following questions:
a) Create the code for constructors (default, copy and two ranges as arguments), accessing functions

for the internal data and testing if a point is in a box
b) For certain instantiations of T1 and T2 (for example, T1 = T2 = double) we wish to add a

number of new member functions, namely:

 area() : the area of the box
 cog() : the centre of gravity of box

c) For the cog() function you will need to add a new member function to Range<T>. What is it
called?

d) In all cases, the Box<T1, T2> box class should delegate to the interface of Range<T1> and
Range<T2>.

3

e) For initialization and specialization of class templates you will need the JVD, pages 27-33 and page
88.

3. (Template Arguments and Template Parameters, page 90 JVD)
C++ supports both typenames and integral types as template parameters. This feature is useful when
creating compile-time (fixed-size) arrays, usage in traits classes and other applications.
In this exercise we wish to create a class that models fixed-sized mathematical arrays. We have
constructors, accessing operators and mathematical operations. The class interface is:

template<typename Type, int N> class VectorSpace

{

private:

 Type arr[N];

public:

 // Constructors & destructor

 VectorSpace();

 VectorSpace(const Type& value); // All elements get this value

 VectorSpace(const VectorSpace<Type, N>& source);

 virtual ~VectorSpace();

 // Selectors

 int Size() const;

 int MinIndex() const; // First index

 int MaxIndex() const; // Last index

 // Some properties

 // Inner product

 Type innerProduct (const VectorSpace<Type, N>& p2) const;

 Type Norm() const; // The l Infinity norm, max value in array

 Type componentProduct() const; // The product of all components

 // Numeric operations

 VectorSpace<Type, N> operator - () const; // The negative of a vector

 VectorSpace<Type, N> operator + (const VectorSpace<Type, N>& v2) const;

 VectorSpace<Type, N> operator - (const VectorSpace<Type, N>& v2) const;

 // Add and subtrct offsets to each coord

 VectorSpace<Type, N> operator + (const Type& offset) const;

 VectorSpace<Type, N> operator - (const Type& offset) const;

 // ** Template member functions ** Premultiplication by a field value

 template <typename F> VectorSpace<Type, N>

 friend operator * (const F& scalar, const

 VectorSpace<Type, N>& pt);

 // Operators

 Type& operator[](int index); // Index operator for non const

 const Type& operator[](int index) const; // Index operator for const

 VectorSpace<Type, N>& operator = (const VectorSpace<Type, N>& source);

};

4

Answer the following questions:
a) Implement he .hpp and .cpp files for this class (you need to type the above function declarations,

it’ s good practice)
b) Create a program to test all the functions in the class (you also need to create a corresponding

print() function):

int main()

{

 const int N = 10;

 VectorSpace<double, N> myArray;

 for (int j = myArray.MinIndex(); j <= myArray.MaxIndex(); j++)

 {

 myArray[j] = double (j);

 }

 print(myArray);

 VectorSpace<double, N> myArray2 = myArray; // No other size works!!

 VectorSpace<double, N> myArray3 = myArray2 - myArray;

 print(myArray2);

 print(myArray3);

 double factor = 0.5;

 VectorSpace<double, N> myArray4 = factor * myArray3;

 print(myArray4);

 double ip = myArray.innerProduct(myArray2);

 return 0;

}

c) Pay particular attention to the template member function in this class as it is a useful feature (see

also JVD page 46, using Stack as an example)

4. ((Global) Template Functions)
It is possible to define C-style non-member functions having template arguments. In some cases we can
group these functions in a namespace because they logically belong together and we also do not wish to
implement as member functions. These kinds of functions are common in STL and boost.

Two examples are:
 template <typename V, int N>

 void print(const VectorSpace<V,N>& vec);

 // D = A + bB + cC; A,B,C, D are vectors, b,c scalars

 template <typename V, int N>

 void TripleSum(VectorSpace<V,N>& D,

 const VectorSpace<V,N>& A, const VectorSpace<V,N>& B,

5

 const VectorSpace<V,N>& C, V a, V b);

Answer the following questions:
a) Implement these functions (create separate .hpp and .cpp files and use a namespace to hold these

functions together)
b) What is the performance difference when comparing calls to TripleSum()against a naïve

application of operator overloading:

 D = A + b*B + c*C;

Investigate the reasons for the discrepancy (e.g. are temporary objects being constrcted and
destructed?)

5. (CRTP Pattern, JVD page 295-299)
The objective in this exercise is to model static polymorphism using the CRTP pattern and to compare
the performance improvements when compared with dynamic polymorphism and virtual function in
classic OOP. To this end, we wish to define flexible algorithms in a class hierarchy where some of the
code is invariant in the base class and some code needs to be implemented in derived classes. Instead of
the usual approach, we define a CRTP hierarchy:

template <typename D>

 struct Base

{

 double algorithm(double x)

 { // Template method pattern

 // Variant part I

 double y = FuncV(x);

 // Invariant part

 y += 2.0;

 if (y <= 21.0)

 y = 3.3;

 else

 y = 3.4;

 // Variant part II

 double z = FuncVII(x);

 // Postcondition

 return y * z;

 }

 inline double FuncV(double x)

 {

 return static_cast<D*> (this) -> FuncV(x);

 }

 inline double FuncVII(double x)

 {

 return static_cast<D*> (this) -> FuncVII(x);

 }

6

 virtual ~Base() {}

};

This is only an example but what is special is how the base class ‘uses’ its derived classes as template
parameters. We also note how the base delegates to its derived classes and that it is compile-time
because there are no virtual functions used.

A class that can be used as a template argument in Base<D> is defined as:

struct DerivedCRTP : Base<DerivedCRTP>

{

 inline double FuncV(double x) { return exp(-x*x) * log(x);}

 inline double FuncVII(double x) { return tanh(x) * sinh(x);}

};

An example of use is:

double x = 3.1415;

Base<DerivedCRTP> d;

for (long j = 1; j <= NBig; j++)

{

 x = x * (100000); temp = d.algorithm(x);

}

Answer the following questions:
a) Under which circumstances is it better to use CRTP rather than dynamic polymorphism, and vice

versa? Focus on performance, how often the functions are called and how easy it is to maintain the
code

b) Choose a test case of a class hierarchy that you have created and create a CRTP version. Compare
the performance of two solutions (in some cases CRTP is [8, 12] times faster but the speedup
depends on the problem and its formulation)

6. (Templates and Inheritance, JVD Chapter 16)
It is possible to derive a template class or a specialized template class from another template class or
even from a non-template class. In this exercise we wish to create a generic composite pattern that
models recursive data structures. To this end, we implement the recursive data structure using an STL
list and the class interface is given by:

#include <list>

template <typename T> class GenericComposite: public T

{

private:

 // The element list using the STL list

 std::list<T*> sl;

 void Copy(const GenericComposite<T>& source);

7

public:

 // User can use the STL iterator

 typedef typename std::list<T*>::iterator iterator;

 typedef typename std::list<T*>::const_iterator const_iterator;

 // Constructors and destructor

 GenericComposite(); // Default constructor

 GenericComposite(const GenericComposite& source);// Copy constructor

 virtual ~GenericComposite(); // Destructor

 // Iterator functions

 iterator begin(); // Return iterator at begin of composite

 const_iterator begin() const; // const iterator at begin of composite

 iterator end(); // Return iterator after end of composite

 const_iterator end() const; // const iterator after end of composite

 // Selectors

 virtual int Count() const; // The number of elements in the list

 // Add functions

 void push_front(T* s); // Add element at the beginning of Genericlist.

 void push_back(T* s); // Add element at the end of Genericlist.

 // Remove functions

 void RemoveFirst(); // Remove first element

 void RemoveLast(); // Remove last element

 void RemoveAll(); // Remove all elements from the list

 void Remove(T* t); // Delete pointer and remove from list

 // Prototype pattern

 virtual T* Copy() const;

 // Operators

 GenericComposite& operator = (const GenericComposite& source);

};

Answer the following questions:
a) Implement the bodies of the above member function declarations. You will need to determine a

memory management policy such as where memory is created and by whom and when is it deleted
(in later sections we show how to alleviate this chore by using smart pointers).

b) What are the constraints on the type T in GenericComposite<T>? In other words, which
functions must instances of T implement in order for the composite class to work?

c) Create a simple class hierarchy with one base class B and two derived classes D1 and D2 (for the
moment they can have minimal functionality but a polymorphic print() function would be
useful as well as having print statements in all destructors)

d) What are the advantages of generic composites? What things do you have to watch out for in the
current implementation?

7. (Template Template Parameters, JVD pages 50, 102, 111)
In exercise 6 we use STL list to implement the GenericComposite<T> class. But we now wish to

choose other data structures as well, for example vector. To this end, we employ the template
template parameter mechanism. The syntax is a bit terse and for this reason we motivate it by a scoped-
down example of a collection. First, the data structure is:

8

template <typename T, template <typename ELEM, typename Alloc> class

Container, typename TAlloc = allocator<T> >

 class GenericComposite: public T

{ // Admittedly, a bit tricky syntax

private:

 // The element list using the STL list

 Container<T*, TAlloc> elements;

public:

 GenericComposite()

 {

 elements = Container<T*, TAlloc>();

 }

 void add(T* t)

 {

 elements.push_back(t);

 }

 void print() const

 {

 cout << "Size: " << elements.size() << endl;

 }

 //

};

We how use the following stripped-down class hierarchy whose instances can be composites:

struct Shape

{

};

struct Point : Shape

{

};

Finally, we need a test program to show how to use the new code:

int main()

{

 GenericComposite<Shape, vector> myComposite;

 GenericComposite<Shape, list> myComposite2;

 Shape* s = new Point;

 myComposite.add(s);

 myComposite2.add(s);

 myComposite.print();

 myComposite2.print();

9

 delete s;

 return 0;

}

Answer the following question:
a) Use this example as a template on how to implement the template template mechanism for

GenericComposite<T>

b) Test your new class with the program code from exercise 6

