Exercises 1.1

Preliminary Reading

Lipschutz, chapters 1, 2; Apostol, parts 2,3

Sets and Relations

1. Find the power set (set of all subsets) of the sets $1,2,3$ and $1,2,3,4,5$. How many subsets are there?

Do the answers give a clue as to the number of subsets of a set with n elements? Prove your conjecture using mathematical induction (Lipschutz page 12).
2. Consider the power set for $1,2,3,4$. Enumerate the subsets of the power set containing k elements, $k=0,1,2,3,4$. How many elements are there in each subset? Can you generalize the result: how many subsets of size k are there in a set with n elements $(n>k)$?
3. Prove the following results using mathematical induction:
a) In a population of n people, there are $n(n-1) / 2$ possible (undirected) communication paths.
b) $1+2+3+. .+n=n(n+1) / 2$
c) $\sum_{k=0}^{n}\binom{n}{k}=2^{n}, \quad n>k$ (see Apostol page 44)
4. Find the Cartesian product of the sets A and B, where $A=$ $1,2,3, B=1,2,3,4$. How many elements does it have? How many elements does the Cartesian product have in the case when A has n elements and B has m elements?
5. Consider the mapping $f(x)=x^{2}$ from a set A to itself. Determine if the mapping is injective, surjective, bijective in the following cases:

- $\mathrm{A}=$ set of all integers.
- $\mathrm{A}=$ set of positive integers.
- $\mathrm{A}=$ set of real numbers.
- $\mathrm{A}=$ set of complex numbers (have real and imaginary parts).

6. Consider tossing a fair coin three times. The outcome per throw is either Head (H) or Tail (T). Answers the following questions:
a) What is the sample space of this experiment, that is the set of all possible outcomes?
b) What is the set corresponding to finding outcomes containing two heads?
c) Consider tossing a fair coin four times. Describe the sample space. (this exercise is related to probability theory that we discuss in a later section).

Numerical Sequences and Series

7. Write (or compute) the first 10 terms of the following sequences:

$$
\begin{array}{ll}
y_{n}=\frac{1}{(n+2)^{3}}, & y_{n}=\frac{n+1}{n+2} \\
y_{n}=\sin \frac{n \pi}{2}, & y_{n}=\frac{n+(-1)^{n}}{n+1}
\end{array}
$$

Are these sequences converging, diverging, monotonic, oscillating, bounded?
8. Consider the sequence defined by the one-step method:

$$
\begin{aligned}
& y_{n+1}=A y_{n}+B, \quad n=0,1,2, . . \\
& \text { Prove that } \\
& y_{n}=\left\{\begin{array}{l}
A^{n} y_{0}+B \frac{1-A^{n}}{1-A}, \quad A \neq 1 \\
y_{0}+B, \quad A=1 \text { for } n=0,1,2, . .
\end{array}\right.
\end{aligned}
$$

9. Prove that the sequence $\left\{\frac{1}{n}\right\}, n \geq 1$ is a Cauchy sequence. Prove that a convergent sequence is also a Cauchy sequence. Give an example of a non-convergent Cauchy sequence.
10. Apply the root test and ratio test to determine the convergence (or otherwise) of the following series:

$$
\sum \frac{1}{n^{2}}, \sum \frac{1}{n}, \sum \frac{n}{e^{n}}
$$

11. Prove the following alternating series converge:

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=\log 2 \\
& \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1}=\pi / 4
\end{aligned}
$$

Continuity

12. Prove that the following function is continuous at $x=0$:

$$
f(x)= \begin{cases}x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

Draw a graph of the function (by any means).
13. Let \mathbb{Q} be the set of rational numbers and \mathbb{R} the set of real numbers.
Define the function:

$$
f(x)= \begin{cases}0, & x \in \mathbb{R} \backslash \mathbb{Q} \\ x, & x \in \mathbb{Q}\end{cases}
$$

Prove that f is continuous at only one point, namely $x=0$.
14. Define the Heaviside function

$$
H(x)= \begin{cases}0, & x<0 \\ 1 / 2, & x=0 \\ 1, & x>0\end{cases}
$$

What kind of discontinuity do we have at $x=0$?

Limits and Functions

15. Use l'Hopital's rule to find the following limits (you may have to differentiate several times in some cases):

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{2 \sin x-\sin 2 x}{x-\sin x}, \quad \lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}} \\
& \lim _{x \rightarrow 0+} x \log x, \quad \lim \frac{b^{x}-1}{x}
\end{aligned}
$$

16. Use l'Hopital's rule to find the following limit (hint: use a log transformation to simplify the function):

$$
\lim _{x \rightarrow \infty}\left(1+\frac{4}{x}\right)^{x}
$$

17. Use the Weierstrass M-test to prove the uniform convergence of the series:

$$
g(x)=\sum_{n=1}^{\infty} \frac{1}{3^{n}} \cos \left(\frac{x}{2^{n}}\right)
$$

(C) Datasim Financial, 2009

