
1. Background, Overview and Goals
In this article we discuss how to design and implement a

software application for a class of option pricing models.

For convenience, we concentrate on a one-factor plain op-

tion problem; the formulation subsumes a range of option

types such as barrier, lookback and standard European op-

tions. This approach allows us to focus on the essential

problems. Once we have designed and implemented the

code for the one-factor problem we shall see that the gener-

alisation to more complex cases becomes feasible.

To be precise, let us consider a one-factor plain option

model that we describe by a second-order parabolic partial

differential equation defined on a bounded interval (A, B) in

space and on a bounded interval (0, T) in time. The partial

differential equation is augmented by boundary conditions

(for convenience we take Dirichlet boundary conditions)

and initial condition (this corresponds to the payoff func-

tion in finance). In order to accommodate a range of option

models we describe the so-called initial boundary value

problem as follows:

In this case we need to find a function u = u(x,t) that satis-

fies the partial differential equation as well as the boundary

and initial conditions. Please note that the variable x is a

general parameter and does not (necessarily) denote the

logarithm of the asset price as is usual in finance and fur-

thermore, the time variable t is defined in the ‘forward’ di-

rection (that is, from t = 0 to t = T). It is a question of

notation, but it can lead to some confusion. We need to be

aware of these facts when examining system (1) and what

the symbols and notation in it really mean. In short, system

(1) is a very generic initial boundary value problem and it

can be instantiated to produce many examples of specific

initial boundary value problems in quantitative finance.

It is not difficult to write code that implements numerical

methods to approximate the solution of initial boundary

value problems such as system (1), for example. However,

many ad-hoc implementations lead to sub-optimal solu-

tions and for this reason we wish to define in how far the

software can be customized to suit new requirements. To

this end, we draw up a list of features that the new design

should satisfy:

• Requirement 1: It must be possible to model a wide range

of initial boundary value problems of type (1) above. In

particular, we model the Black Scholes equation using a

variety of payoff functions and option types. Furthermore,

the software must support constant volatility and time-

dependent volatility surfaces. Finally, it must be possible

to enter parameters (such as interest rates and maturi-

ties) from dialog boxes, databases and real-time data

feeds.

• Requirement 2: We wish to implement new finite differ-

ence schemes for system (1) quickly and with the least

amount of effort. The rationale for this requirement is

that we would like to apply many finite difference

schemes to solve initial boundary value problems and it

is in our interest to do this without having to make major

changes in the software.

1

Software Frameworks in
Quantitative Finance
Part II: Developing C++ Applications for the Finite Difference Method (FDM)

Daniel J. Duffy

Lu ≡ −∂u
∂t + σ(x, t)∂2u

∂x2 + µ(x, t)∂u
∂x + b(x, t)u = f(x, t) in D

Abstract
In this article we discuss a number of techniques that help us design and implement flexible and maintainable software sys-

tems for option pricing models. We concentrate on showing how to model the Finite Difference Method (FDM) using C++

in combination with design patterns and software frameworks. In particular, we describe how the framework can be used as

a design tool that allows us to create new pricing models and schemes by customizing the framework in a non-intrusive

way.

We assume that the reader has some knowledge of design patterns. We have discussed these in previous editions of

Wilmott; in particular, the current article is a generalization of the results in Duffy 2005.



• Requirement 3: It should be possible to visualize the out-

put from the finite difference engine. It particular, we are

interested in presenting option prices at the maturity date

(and possibly other dates) in Excel. We may even wish to

adapt the software so that it can be used as a COM

addin. In this latter case the user dialog takes place in

Excel itself.

We now describe how to realise these goals using modern

software design techniques.

2. Modelling Options using PDE and FDM
In this section we show how to model the initial boundary

value problem (1) and the related finite difference schemes

that approximate it. Furthermore, we ensure that the three

requirements of section one are realised in our design.

In general, each well-defined unit of functionality will be im-

plemented as a class or some kind of class hierarchy.

2.1 Partial Differential Equations for Option
Models
We are able to model a wide range of option models be-

cause we have designed the system (1) using the Bridge pat-

tern. We recall that this pattern associates a generic class

with a specific implementation thereof. In the current case

the generic class implements the components in system (1)

while we can choose how to implement this class using

other application-specific classes. We depict the design as

an UML class diagram in figure 1.

The class IBVP contains the interface specifications that

implement system (1) while Implementation is the base

class for all specific implementations, such as class

BlackScholes, for example. In the latter case we see this

class uses the services of a class that models one-factor op-

tions in conjunction with payoff functions. This is a very

flexible design because:

• Clients of IBVP have no knowledge of its low-level imple-

mentation (this is called information hiding)

• We can add new classes to the class network simply by

implementing a number of pure virtual functions

• Delegation and Composition principle: delegation is

sometimes called object-level inheritance; in the current

context this means that we can switch implementations

at run-time. This is valid for both the Bridge and Strategy

patterns in figure 1.

We now give an indication of how we implemented the C++

code that realizes the UML diagram in figure 1. First, the in-

terface specification for the class IBVP is a direct mapping

of the initial boundary problem in system (1) to code and is

given by:

class IBVP
{
private:
Range<double> xaxis; // Space interval
Range<double> taxis; // Time interval

IBVPImp* imp; // Bridge implementation

private:
IBVP();

public:
IBVP (IBVPImp& executor, const Range<double>&
xrange,

const Range<double>& trange);

// Selector functions
// Coefficients of parabolic second order operator
double diffusion(double x, double t) const; // Sec-
ond derivative

double convection(double x, double t) const;

double zeroterm(double x, double t) const;

double RHS(double x, double t) const;

// Boundary and initial conditions
double BCL(double t) const; // Left hand boundary

// condition
double BCR(double t) const; // Right hand boundary

// condition

double IC(double x) const; // Initial condition

// The domain in which the PDE is 'played'
Range<double>& xrange();
Range<double>& trange();

};

These functions will be implemented by specific classes

such as a class that models the one-factor Black Scholes

PDE; this gets it data from a class Option which in its turn

has a corresponding Payoff pointer (this is an instance of

a Strategy pattern):

class BlackScholes : public Implementation
{
public:

Option* opt;

BlackScholes(Option& option);

double diffusion(double x, double t) const;

double convection(double x, double t) const;

2 © Datasim Financial, 2007

IBVP Implementation

Call Put

Payoff Option

OtherBlackScholes

. . .

. . .

uses

Figure 1 PDE Class Network



// etc.

double IC(double x) const;

};

The class for the European option is a data container and it

has an embedded payoff object. The (simple) base class for

all kinds of derivatives is given by:

class Instrument
{
public:

};

and the current option class’ code is given by:

class Option : public Instrument
{
public:
// PUBLIC, PURE FOR PEDAGOGICAL REASONS
double r; // Interest rate
double sig; // Volatility
double K; // Strike price
double T; // Expiry date
double b; // Cost of carry
double SMax; // Far field condition
char type; // Call or put

// An option uses a polymorphic payoff object
Payoff* OptionPayoff;

Option()
{

}
};

One final remark concerning the structure of the classes

that implement the Black Scholes model in figure 1; we note

that the configuration is an example of a Layers pattern

(Buschmann 1996, Duffy 2004). In this case we have de-

signed the problem by partitioning the current implementa-

tion into three layers:

• Layer 1 (Control layer, in this case BlackScholes): the

layer that implements the services required by its clients

(for example, the FDM class as described in the next sec-

tion)

• Layer 2 (Data or Entity layer): contains application ob-

jects, in this case the class Option
• Layer 3 (Boundary or hardware layer): the layer that gener-

ates the data for the Entity layer. We shall discuss this

issue in more detail in section three where we introduce

various factory patterns

This discussion completes the description of the so-called

continuous problem. The full source code can be found in

Duffy 2006a.

2.2 Finite Difference Schemes
We now discuss how to approximate system (1) using finite

difference schemes. We concentrate on the main design is-

sues here because the underlying theory and practical cod-

ing issues have been discussed elsewhere (see Duffy 2006,

Duffy 2006a and Duffy 2005). Our main interest lies in

being able to test and install new finite difference schemes

with as little code change as possible. We achieve this by

defining standard interfaces between classes (using virtual

functions, for example) and decomposing this part of the

class network into independent components, as can be

seen in figure 2.

An extremely important design pattern that promotes

framework construction is the Template Method Pattern

(Gamma 1995). This pattern is concerned with algorithm

design and implementation; the algorithm consists of an in-

variant part that is common to all (derived) classes and a

variant part that must be defined in derived classes. In the

current case the invariant part could correspond to mesh

generation (among other things) while the variant part cor-

responds to how specific finite difference schemes (for ex-

ample, the Euler or Crank Nicolson schemes) actually

compute the solution at time level n+1 in terms of the

known data at time level n. To this end, the interface for the

base class FDM is given by:

class FDM
{ // Set of finite difference to solve
// scalar initial boundary value problems

private:

// …

protected:

IBVP* ibvp; // Pointer to 'parent'

long N; // The number of subdivisions of inter-
val
double k; // Step length in time
long J; // The number of subdivisions of inter-

val

// …

Mesher m;
Vector<double, long> xarr; // Useful work array
Vector<double, long> tarr; // Useful work array

// …

Software Frameworks in Quantitative Finance; Part II: Developing C++ Applications for the Finite Difference Method (FDM)

3© Datasim Financial, 2007

FDM IBVP

EulerFitted . . .

1

Crank Nicolson

1

Mesher

Figure 2 FDM Class Network



// Other data
long n; // Current counter
Vector<double, long> vecOld;
Vector<double, long> vecNew;

FDM(const FDM& source);
FDM& operator = (const FDM& source);

public:
FDM();
FDM(IBVP& source, long NSteps, long JSteps);
virtual ~FDM();

The result of the calculation
NumericMatrix<double, long>& result();

// Mesh data
Vector<double, long> XValues() const;

// Array of x values
Vector<double, long> TValues() const;

// Array of time val-
ues

// Hook function for Template Method pattern
virtual void calculateBC() = 0;

// Calculate BC at n+1
virtual void calculate() = 0;

// Calculate sol. at
n+1

};

Derived classes must implement these last two functions

and then we are done in the sense that we can test our new

finite difference schemes almost immediately. The full code

for the algorithm is given by:

NumericMatrix<double, long>& FDM::result()
{ // The result of the calculation

L1:
tnow = tprev + k;

// Template Method pattern here

// Variant part
calculateBC(); // Calculate the BC at n+1

// Variant part; pure virtual hook functions
calculate (); // Calculate the solution at n+1

// Invariant part
if (currentIndex < maxIndex)
{

tprev = tnow;
currentIndex++;
// Now postprocess
res.Row(currentIndex, vecNew);
vecOld = vecNew;

goto L1;
}

return res;
}

We describe this code in words; this code is a simple state

machine in which the option price at level n+1 is calculated.

The main steps are: increment the time level, calculate the

boundary conditions, calculate the solution at level n+1

(each kind of scheme has its own way of doing this); finally,

the invariant part of the code corresponds to adding the so-

lution at time level n+1 to the matrix denoted by the variable

res.

3. Initialisation, Configuration
We have discussed the class diagrams and structural rela-

tionships between classes in the previous sections. In order

to ‘complete the jigsaw’ we need to discuss how the appli-

cation is configured and how the data in the application is

initialised. In short, we discuss:

• Abstract Factory pattern that initialises the option data

• The Builder pattern that configures all the classes in fig-

ures 1, 2 and 3

The first pattern is shown in figure 3. Here we have a num-

ber of factory classes for creating option data, for example

using the console or by some remote data feed system

from different vendors or providers. We focus on showing

how to generate the data using the console. To this end, the

abstract interface that creates an option is realized by an

abstract class:

class InstrumentFactory
{
public:

virtual Option* CreateOption() const = 0;

};

The class for console input is defined as follows:

class ConsoleInstrumentFactory : public Instrument-
Factory
{
public:

Option* CreateOption() const
{

4 © Datasim Financial, 2007

Factory Option

Remote . . .

<<creates>>

Console

#2 . . .#1

Provider

Figure 3 Creational Patterns



Software Frameworks in Quantitative Finance; Part II: Developing C++ Applications for the Finite Difference Method (FDM)

5© Datasim Financial, 2007

Figure 4 Visualisation in Excel



double dr; // Interest rate
double dsig; // Volatility
double dK; // Strike price
double dT; // Expiry date
double db; // Cost of carry
double dSMax; // Far field boundary

cout << "Interest rate: ";
cin >> dr;

// more input here for the other parameters

Option* result = new Option;

cout << "Payoff 1) Call, 2) Put: ";
int ans;
cin >> ans;
if (ans == 1)
{

result-> type = 'C';
(*result).OptionPayoff =

OneFactorPayoff(dK, MyCallPayoffFN);
}
else
{

result-> type = 'P';
(*result).OptionPayoff =

OneFactorPayoff(dK, MyPutPayoffFN);
}

result->r = dr;
result->sig = dsig;
result->K = dK;

result->T = dT;

result->b = db;

result->SMax = dSMax;

return result;

}
};

Finally, we employ the Builder pattern to construct the com-

plete class network that is the union of the diagrams in fig-

ures 1, 2 and 3. In general, this pattern builds a complex

object in an incremental manner while hiding details of the

construction process from clients (see Gamma 1995). We

have generalized it to support arbitrary class networks. It is

possible to configure an application without having to resort

to builders but the code tends to become unmaintainenable.

Again, this pattern then becomes responsible for one main

task, namely creation and initialization of classes and the re-

lationships between them.

4. Examples and Applications
We now describe how to use the framework. To this end, we

describe the interface functions that we can use in a main

program and how the generated data are displayed in Excel,

for example. We use the Excel visualization package that al-

lows us to display output (for example, vectors and matri-

ces) in a variety of formats. In particular, we can display the

full set of option values for each stock price from time t = 0

to t = T. The code that realizes this output is given by:

cout << "Output: 1) Cell(matrix), 2) list of line
graphs: ";
int choice; cin >> choice;

// N.B. ‘fdm’is an instance of class CrankNicolson,
for example

if (choice == 1)
{
try
{

printMatrixInExcel(fdm.result(),
fdm.TValues(),
fdm.XValues());

}
catch (DatasimException& e)
{

e.print();
return 0;

}
}

if (choice == 2)
{
cout << "Frequency of output: "; int f; cin >> f;

try
{

printMatrixChartsInExcel(f,
fdm.result(),

fdm.TValues(),
fdm.XValues());

}
catch (DatasimException& e)
{

e.print();
return 0;

}
}

}

The results are then displayed as an Excel chart or as cells.

To show what is possible we take a somewhat more ex-

tended diagram in which we display option price and its

sensitivities for a range of values of the underlying S. The au-

thor finds this extremely useful when testing and debugging

new schemes.

In this example we start Excel application (using COM) from

our C++ code and we create a separate sheet for each kind

of information that we are interested in viewing.

5. Extending the Framework
In this article we introduced a framework for one-factor op-

tion pricing problems. The architecture is reasonably generic

and it can be applied to a range of problems. However, it

can be improved in a number of ways, as already discussed

in Kienitz 2006. First, we wish to decouple the classes FDM
and IBVP even further so that these classes will have no

knowledge of each other. We realize this requirement by in-

troducing an object between these two classes. This will be

an instance of a Mediator pattern. The main advantage of

this design tactic is that we are forced to think in terms of

standard interfaces and components. Another pattern is the

Blackboard (as discussed in Kienitz 2007).

6 © Datasim Financial, 2007



5.1. More general one-Factor Pricing Models
There are a number of new requirements that will need to

be realized if the system is to be useful for a wider range of

one-factor models. Some important ones are:

• R1: Early exercise features and American options

• R2: Modelling jumps (for example, the Merton model)

• R3: Systems of equations (for example, convertible

bonds)

• R4: Discrete and continuous monitoring

• R5: Integration with calibration software

• R6: Nonlinear problems and problems with discontinu-

ities

Each of these requirements can be mathematically and nu-

merically modeled using PDE and finite difference theory

and then mapped to knowledge sources that will be inte-

grated into the designs as shown in figures 1, 2 and 3. To

take an example, to model R2 we need to refactor the class

IBVP so that it can support not only partial differential

equations but also partial-integro differential equations

(PIDE). One way to do this is to use the Whole-Part pattern

(Buschmann 1996) to aggregate the existing classes for the

PDE part of the problem with the new classes for the PIDE

part.

5.2. Does the Framework generalize to n Fac-
tors?
An important question is whether the framework can be

modified, copied or extended in order to price two-factor

and three-factor pricing problems, for example. The answer

is yes. However, we propose using a generic approach by

using C++ template mechanism. In general we set up

classes in the framework in such a way that the dimension

N of the problem is explicitly modeled as a template param-

eter. Then, when creating code for the two-factor problem

all we have to do is to instantiate the template class by set-

ting N to the value 2.

5.3. Performance and Multi-threading Applica-
tions
Many production applications have been designed and im-

plemented to run on sequential machines but at the mo-

ment of writing we are witnessing the emergence of new

hardware that can dramatically improve the performance of

these applications. There are a number of issues to be ad-

dressed, such as:

• How do we design multi-threaded and high-performance

applications?

• How do I migrate my current application to a multi-

threaded one?

To partially answer the first question we note that there

must a good match between the ‘paper design’ of a soft-

ware system and its eventual implementation in hardware.

For example, by using the Mediator pattern we create a cen-

tral component that acts as a kind of hub between other

loosely-coupled components. This design is very flexible

and it also allows us to map it to software libraries that im-

plement a master-slave threading model; the master is the

main thread and it is responsible for the creation of other

threads, one thread for each component. A library that sup-

ports that mode of operation is OpenMP (see

www.openmp.org) and is a collection of compiler directives,

library functions and environmental variables that can be

used to specify shared-memory parallelism in C and C++

programs. One of the advantages of this library is that its

directives can be included in existing code in a non-intru-

sive manner. This tactic constitutes one approach to im-

proving the performance of existing applications but in

general a partial redesign of critical parts of the application

will be necessary.

Summary and Conclusions
We have given an overview of a customizable software

framework in C++ that we have constructed by piecing de-

sign patterns into a network of cooperating objects. We em-

phasized the importance of partitioning the application into

a hierarchy of loosely coupled software modules or compo-

nents.

The advantages of this approach are that the software can

be extended to suit new requirements and that it is suitable

for a migration to a hardware environment containing mul-

tiple processors.

References
Alexandrescu, A. 2001 Modern C++ Design: Generic Program-

ming and Design Patterns Applied Addison-Wesley

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad and

M. Stal 1996 Pattern-Oriented Software Architecture: A Sys-

tem of Patterns, John Wiley and Sons, Chichester, UK

Duffy, Daniel J. 2004 Domain Architectures: Models and Ar-

chitectures for UML Applications, John Wiley and Sons,

Chichester, UK

Duffy, Daniel J. 2004a Financial Instrument Pricing in C++,

John Wiley and Sons, Chichester, UK

Duffy, Daniel J. 2005 Design Patterns in Option Pricing Part

III; Modelling the Finite Difference Method in C++ Wilmott

Magazine July 2005

Duffy, Daniel J. 2006 Finance Difference Methods in Financial

Engineering, A Partial Differential Equation Approach, John

Wiley and Sons, Chichester, UK

Duffy, Daniel J. 2006a Introduction to C++ for financial engi-

neers, An Object-Oriented Approach, John Wiley and Sons,

Chichester, UK

Gamma, E., Helm, R., Johnson, R., Vlissides, J. 1995 Design

Patterns, Elements of Reusable Object-Oriented Software, Ad-

dison-Wesley Reading MA

Kienitz, J. and Duffy, Daniel J. 2007 Software Frameworks in

Quantitative Finance, Part I Fundamental Principles and Ap-

plications to Monte Carlo Methods Wilmott January

Shaw, M. and D. Garlan 1996 Software Architectures Perspec-

tives on an emerging Discipline Prentice Hall

Stroustrup, B. 1997 The C++ Programming Language (3rd

Edition), Addison-Wesley Reading MA

Software Frameworks in Quantitative Finance; Part II: Developing C++ Applications for the Finite Difference Method (FDM)

7© Datasim Financial, 2007



8 © Datasim Financial, 2007


