Test your Knowledge of Design Patterns

Summary 

This note represents a set of questions to test your knowledge of the famous Design Patterns by Eric Gamma and colleagues. It tests your insights and theoretical knowledge of patterns. The proof of the pudding is when you have implemented one or more design patterns in production code.

The standard reference is:

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995) Design Patterns, Elements of Reusable Object-Oriented Software, Addison-Wesley Reading MA

As in judo, the questions are based on colour. When on the mat you know the grade and experience of the judoka facing you.

(White Belt)


What is a design pattern?


Why would you ever wish to use a design pattern?


How many patterns are there in the GOF book?


Can design patterns be implemented in C++, Visual Basic .NET, C# and Java?

(Yellow Belt)


How are design patterns documented?


What are the three main design patterns categories?

What is the Singleton pattern? 

What’s the problem with the C++ implementation of Singleton in GOF?

(Orange Belt)


What is the difference between Decorator and Proxy?


What is the difference between Strategy and Bridge?


What is the difference between Decorator and Visitor?


Which patterns should you use if you wish to have:



Flexible algorithms that implement member functions?



Independence from hardware/software drivers?



A ‘repository’ of ready-to-use objects?

(Blue Belt)

We have an Asset class and an Option class that is subscribed to it. Zero or more options ‘watch’ an Asset object. Any change in the latter object should propagate to, and update all subscribed options (then the data remains consistent). Which pattern should you use and document it in UML (according to the way it is done in Gamma’s book)?

Give real-life examples of the following patterns and pattern combinations:


A Visitor with an embedded Bridge


A Bridge and Abstract Factory


A Visitor with an embedded Strategy

(Brown Belt)

In many applications it is important to be able to create, structure and manage complex objects. An example in Financial Engineering is a Collateralized Debt Obligation (or CDO for short). A CDO can consist of other CDOs and other financial products. How would you apply the following design patterns to the design and implementation of CDOs:


Builder (Creational)


Composite, Decorator and Property patterns (Structural)


Visitor, Strategy, State (Behavioural)

Document the class diagrams using Unified Modeling Language (UML).

(Black Belt, 1st Dan)

Design a simple Option Calculator using patterns. There are three main subsystems:


Input: getting option parameters from a GUI

Conversion: calculating option price using Finite Differences, Monte Carlo or binomial method


Display: present results in Excel, OpenGL and other media

Answer the following questions:

. Which patterns would you use to ensure that the above subsystems are loosely coupled?

. We should be able to create CDO objects and their data from different sources?

. There are many configurable algorithms for CDOs

. It must be easy to define and add new display drivers without the system falling down around us

. Are the GOF (Gang of Four) patterns up to the job?

(Black Belt, 2st Dan)

(We are now in a different liga)

What are the following patterns?


Model-View-Controller (MVC)


Presentation-Abstraction-Control (PAC)


Layers


Mediator

Use these patterns to create a flexible software system.

You can keep going on to …

(Black Belt, 10th Dan)

You’ll get this when you retire (at 73). At this stage you must wear a white belt and off we go again.

Other References

Buschmann, F. et al 1996 ‘Pattern-Oriented Software Architecture, A System of Patterns’, John Wiley & Sons Chichester


This book takes over from GOF in the sense that it is useful for the design of medium-sized systems. It discusses MVC, PAC and Layers patterns, among others

Duffy, Daniel J. 2004 Financial Instrument Pricing in C++ John Wiley and Sons Chichester

This is C++, Standard Template Library (STL) and Design Patterns applied to Financial Engineering

Duffy, Daniel J. 2004 Domain Architecture:  Models and Architectures for UML Applications John Wiley and Sons Chichester

Domain Architectures are reference models (kind of templates or domain pattern) that you can use as ‘cookie-cutter’ for your own application, for example an Option Calculator.

Alexander, C. 1979 The Timeless Way of Building, Oxford University Press

Christopher Alexander is an architect and his work was the inspiration for the software patterns movement.

Author: Daniel J. Duffy

© Datasim Education BV 2004

